MODBUS MASTER源代码
#define READ_COIL 01
#define READ_DI 02
#define READ_HLD_REG 03
#define READ_AI 04
#define SET_COIL 05
#define SET_HLD_REG 06
#define READ_FIFO 24
#define PROTOCOL_EXCEPTION 0x81
#define PROTOCOL_ERR 1
#define FRM_ERR 2
const unsigned char auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40
} ;
const unsigned char auchCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,
0x40
};
const unsigned char char_tab[128]=
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0,
0, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
const unsigned char tab_char[16]=
{
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
};
const unsigned int bit_tab[]=
{
BIT0, BIT1, BIT2, BIT3, BIT4, BIT5, BIT6, BIT7,
BIT8, BIT9, BITA, BITB, BITC, BITD, BITE, BITF
};
unsigned short crc(unsigned char *puchMsg , unsigned short usDataLen)
{
unsigned char uchCRCHi = 0xFF ; /* high byte of CRC initialized */
unsigned char uchCRCLo = 0xFF ; /* low byte of CRC initialized */
unsigned uIndex ; /* will index into CRC lookup table */
while (usDataLen--) /* pass through message buffer */
{
uIndex = uchCRCHi ^ *puchMsg++ ; /* calculate the CRC */
uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex];
uchCRCLo = auchCRCLo[uIndex] ;
}
return (uchCRCHi << 8 | uchCRCLo) ;
}
unsigned char a2toh(unsigned char *str)
{
unsigned char tmp;
tmp = 0;
tmp = char_tab[*str];
str++;
tmp = tmp*16 + char_tab[* str];
return tmp;
}
int get_bit( unsigned int data, int bit )
{
if (bit > 16) return 0;
if (data & bit_tab[bit]) return 1;
else return 0;
}
void htoa( char *str, unsigned char num)
{
unsigned char tmp;
tmp = num;
tmp = tmp & 0xf0;
tmp >>= 4;
*str = tab_char [ tmp];
str++;
*str = tab_char [ num & 0x0f];
}
int asctortu( unsigned char *dest, unsigned char *source)
{
unsigned char *tmp;
unsigned char i;
i=0;
tmp = dest;
if( *source !=':') return 0;
source ++;
while ( *source != 0x0d)
{
*tmp = a2toh( source);
tmp ++;
source ++;
source ++;
i++;
}
source ++;
if ( *source != 0x0a) return 0;
else
{
return i;
}
}
void rtutoascii( unsigned char *dest, unsigned char *source, int lenth)
{
dest ++;
for ( ; lenth>0; lenth--)
{
htoa( dest, *source);
dest++;
dest++;
source++;
}
}
void rtutoasc( unsigned char *dest, unsigned char *source, int lenth)
{
dest ++;
for ( ; lenth>0; lenth--)
{
htoa( dest, *source);
dest++;
dest++;
source++;
}
}
unsigned char lrc(unsigned char *str,int lenth)
{
unsigned char tmp;
tmp = 0;
while (lenth-- )
{
tmp += *str++;
}
return ((unsigned char)(-((char)tmp)));
}
void construct_ascii_frm ( unsigned char *dst_buf, unsigned char *src_buf, unsigned char lenth)
{
unsigned char lrc_tmp;
lrc_tmp = lrc( src_buf, lenth);
*(src_buf+lenth) = lrc_tmp;
lenth++;
*dst_buf = ':';
rtutoascii( dst_buf,src_buf, lenth);
*(dst_buf + 2 * lenth+1) = 0x0d;
*(dst_buf + 2 * lenth+2) = 0x0a;
}
void construct_rtu_frm ( unsigned char *dst_buf,unsigned char *src_buf,unsigned char lenth)
{
unsigned short crc_tmp;
crc_tmp = crc(src_buf, lenth);
*(src_buf+lenth) = crc_tmp >> 8 ;
*(src_buf+lenth+1) = crc_tmp & 0xff;
lenth++;
lenth++;
while ( lenth--)
{
*dst_buf = *src_buf;
dst_buf++;
src_buf++;
}
}
/*
1 读取继电器状态
发送:
*/
int ascii_read_coil_status ( unsigned char board_adr, unsigned char *com_buf,int start_address,int lenth)
{
unsigned char tmp[256],tmp_lenth;
tmp[0] = board_adr;
tmp[1] = READ_COIL;
tmp[2] = HI(start_address);
tmp[3] = LOW(start_address);
tmp[4] = HI(lenth);
tmp[5] = LOW(lenth);
tmp_lenth = 6;
construct_ascii_frm (com_buf, tmp, tmp_lenth);
return 18;
}
int rtu_read_coil_status ( unsigned char board_adr,unsigned char *com_buf,int start_address,int lenth)
{
unsigned char tmp[256], tmp_lenth;
tmp[0] = board_adr;
tmp[1] = READ_COIL;
tmp[2] = HI(start_address);
tmp[3] = LOW(start_address);
tmp[4] = HI(lenth);
tmp[5] = LOW(lenth);
tmp_lenth = 6;
construct_rtu_frm ( com_buf, tmp, tmp_lenth);
return 8;
}
/*
2 读取开关量输入
发送:
*/
int ascii_read_input_status ( unsigned char board_adr,unsigned char *com_buf,int start_address,int lenth)
{
unsigned char tmp[256], tmp_lenth;
tmp[0] = board_adr;
tmp[1] = READ_DI;
tmp[2] = HI(start_address);
tmp[3] = LOW(start_address);
tmp[4] = HI(lenth);
tmp[5] = LOW(lenth);
tmp_lenth = 6;
construct_ascii_frm ( com_buf, tmp, tmp_lenth);
return 18;
}
int rtu_read_input_status ( unsigned char board_adr,unsigned char *com_buf,int start_address,int lenth)
{
unsigned char tmp[256], tmp_lenth;
tmp[0] = board_adr;
tmp[1] = READ_DI;
tmp[2] = HI(start_address);
tmp[3] = LOW(start_address);
tmp[4] = HI(lenth);
tmp[5] = LOW(lenth);
tmp_lenth = 6;
construct_rtu_frm ( com_buf,tmp,tmp_lenth);
return 8;
}
/*
3 读取保持寄存器
发送:
*/
int ascii_read_hldreg ( unsigned char board_adr,unsigned char *com_buf,int start_address,int lenth)
{
unsigned char tmp[256], tmp_lenth;
tmp[0] = board_adr;
tmp[1] = READ_HLD_REG;
tmp[2] = HI(start_address);
tmp[3] = LOW(start_address);
tmp[4] = HI(lenth);
tmp[5] = LOW(lenth);
tmp_lenth = 6;
construct_ascii_frm ( com_buf, tmp, tmp_lenth);
return 18;
}
int rtu_read_hldreg ( unsigned char board_adr,unsigned char *com_buf,int start_address,int lenth)
{
unsigned char tmp[256], tmp_lenth;
tmp[0] = board_adr;
tmp[1] = READ_HLD_REG;
tmp[2] = HI(start_address);
tmp[3] = LOW(start_address);
tmp[4] = HI(lenth);
tmp[5] = LOW(lenth);
tmp_lenth = 6;
construct_rtu_frm ( com_buf,tmp,tmp_lenth);
return 8;
}
// 4 发送读取模拟量输入
int ascii_read_anloginput( unsigned char board_adr,unsigned char *com_buf,int start_address,int lenth)
{
unsigned char tmp[256], tmp_lenth;
tmp[0] = board_adr;
tmp[1] = READ_AI;
tmp[2] = HI(start_address);
tmp[3] = LOW(start_address);
tmp[4] = HI(lenth);
tmp[5] = LOW(lenth);
tmp_lenth = 6;
construct_ascii_frm ( com_buf, tmp, tmp_lenth);
return 18;
}
int rtu_read_anloginput( unsigned char board_adr,unsigned char *com_buf,int start_address,int lenth)
{
unsigned char tmp[256],tmp_lenth;
tmp[0] = board_adr;
tmp[1] = READ_AI;
tmp[2] = HI(start_address);
tmp[3] = LOW(start_address);
tmp[4] = HI(lenth);
tmp[5] = LOW(lenth);
tmp_lenth = 6;
construct_rtu_frm ( com_buf,tmp,tmp_lenth);
return 8;
}
/*
5 设置继电器
发送:status =0 继电器释放 否则继电器吸合,address 为吸合的继电器编号,0为第一个继电器,依次类推
*/
int ascii_set_coil ( unsigned char board_adr,unsigned char *com_buf,int start_address,int status )
{
unsigned char tmp[256], tmp_lenth;
tmp[0] = board_adr;
tmp[1] = SET_COIL ;
tmp[2] = HI(start_address);
tmp[3] = LOW(start_address);
if ( status )
{
tmp[4] = 0xff;
tmp[5] = 0;
}
else
{
tmp[4]= 0;
tmp[5]= 0;
}
tmp_lenth = 6;
construct_ascii_frm ( com_buf, tmp, tmp_lenth);
return 18;
}
int rtu_set_coil ( unsigned char board_adr,unsigned char *com_buf,int start_address,int status )
{
unsigned char tmp[256], tmp_lenth;
tmp[0] = board_adr;
tmp[1] = SET_COIL ;
tmp[2] = HI(start_address);
tmp[3] = LOW(start_address);
if ( status )
{
tmp[4] = 0xff;
tmp[5] = 0;
}
else
{
tmp[4]= 0;
tmp[5]= 0;
}
tmp_lenth = 6;
construct_rtu_frm ( com_buf, tmp, tmp_lenth);
return 8 ;
}
/*
6 设置保持寄存器
*/
int ascii_set_hldreg( unsigned char board_adr,unsigned char *com_buf,int start_address,unsigned int value )
{
unsigned char tmp[256], tmp_lenth;
tmp[0] = board_adr;
tmp[1] = SET_HLD_REG;
tmp[2] = HI(start_address);
tmp[3] = LOW(start_address);
tmp[4] = HI(value);
tmp[5] = LOW(value);
tmp_lenth = 6;
construct_ascii_frm ( com_buf, tmp, tmp_lenth);
return 18;
}
int rtu_set_hldreg( unsigned char board_adr,unsigned char *com_buf, int start_address, unsigned int value )
{
unsigned char tmp[256], tmp_lenth;
tmp[0] = board_adr;
tmp[1] = SET_HLD_REG;
tmp[2] = HI(start_address);
tmp[3] = LOW(start_address);
tmp[4] = HI(value);
tmp[5] = LOW(value);
tmp_lenth = 6;
construct_rtu_frm ( com_buf, tmp, tmp_lenth);
return 8 ;
}
/*
7
接收分析:
dest_p 接收到数据指针
sourc_p 串口接收缓冲区指针
data_start_address 开始地址
*/
/* RTU 接收分析 */
int rtu_data_anlys( int *dest_p, unsigned char *source_p, int data_start_address, int fr_lenth)
{
unsigned short crc_result, crc_tmp;
unsigned char tmp1, tmp2, shift;
crc_tmp = *(source_p + fr_lenth-2); // crc 第一字节
crc_tmp = crc_tmp * 256 + *( source_p+fr_lenth-1); // CRC 值
crc_result = crc(source_p, fr_lenth-2); // 计算CRC 值
if ( crc_tmp != crc_result ) // CRC 校验正确
{
hld_reg[0x31]++;
return -1;
}
switch ( *(source_p+1) ) // 功能码
{
case READ_COIL: /*读取继电器状态 */
for ( tmp1=0; tmp1<*( source_p+2); tmp1++)
{
shift = 1;
for ( tmp2=0; tmp2<8; tmp2++)
{
*(dest_p+data_start_address+tmp1*8+tmp2) = shift & *( source_p+3);
*( source_p+3) >>= 1;
}
}
break;
case READ_DI: /*读取开关量输入*/
for ( tmp1=0; tmp1<*( source_p+2); tmp1++)
{
shift = 1;
for (tmp2=0; tmp2<8; tmp2 ++)
{
*(dest_p+data_start_address+tmp1*8+tmp2) = shift & *( source_p+3);
*( source_p+3)>>=1;
}
}
break;
case READ_HLD_REG: /*读取保持寄存器*/
for ( tmp1=0; tmp1<*( source_p+2); tmp1+=2)
{
*(dest_p + data_start_address+ tmp1/2)= *( source_p+tmp1+3)*256 + *( source_p+tmp1+4) ;
}
break ;
case 4: /*读取模拟量输入*/
for ( tmp1=0; tmp1<*( source_p+2); tmp1+=2)
{
*(dest_p + data_start_address+ tmp1/2) = *( source_p+tmp1+3)*256 + *( source_p+tmp1+4) ;
}
break;
case PROTOCOL_EXCEPTION:
return -1*PROTOCOL_ERR;
//break;
default:
return -1*PROTOCOL_ERR;
// break;
}
return 0;
}
int ascii_data_anlys( int *dest_p,char *source_p,int data_start_address)
{
unsigned char tmp[256];
int lenth;
int tmp1, tmp2;
char shift;
lenth = asctortu(tmp, source_p);
if ( lenth==0) return -1* FRM_ERR;
switch (tmp[1] )
{
case READ_COIL: /*读取继电器状态 */
for ( tmp1=0; tmp1<tmp[2]; tmp1++)
{
shift = 1;
for ( tmp2=0; tmp2<8; tmp2++)
{
*(dest_p+data_start_address+tmp1*8+tmp2) = shift & tmp [tmp1+3];
tmp [tmp1+3] >>= 1;
}
}
break;
case READ_DI: /*读取开关量输入*/
for ( tmp1=0; tmp1<tmp[2]; tmp1++)
{
shift = 1;
for (tmp2=0; tmp2<8; tmp2 ++)
{
*(dest_p+data_start_address+tmp1*8+tmp2)= shift & tmp [tmp1+3];
tmp [tmp1+3]>>=1;
}
}
break;
case READ_HLD_REG: /*读取保持寄存器*/
for (tmp1=0; tmp1<tmp[2]; tmp1+=2)
{
*(dest_p + data_start_address+ tmp1/2) = tmp[tmp1+3]*256 + tmp[tmp1+4] ;
}
break ;
case 4: /*读取模拟量输入*/
for (tmp1=0; tmp1<tmp[2]; tmp1+=2)
{
*(dest_p+data_start_address+ tmp1/2) = tmp[tmp1+3]*256 + tmp[tmp1+4] ;
}
break;
case PROTOCOL_EXCEPTION:
return -1*PROTOCOL_ERR;
//break;
default:
break;
}
return 0;
}
/*
主程序按照一定的顺序调用 1~6子程序,然后把生成的缓存内容写入串口。
接收到数据送给7的子程序分析即可。
ASCII 方式下,用0X0D, 0X0A作为帧结束判断的依据
RTU方式下,以两个字节间的时间间隔大于3.5倍的一个字符周期为帧结束判断依据
READ() WRITE()是两个假想存在的函数 ,需要根据不同的系统来完成。
比如在单片机中,可能要用到中断模式;在LINUX下可能是一个阻塞的READ WRITE调用,在WINDOWS下可能是串口控件的READ WRITE 方法。。。。。
因为系统各式各样,所以只能抽象出一个假想的函数,由代码的使用者实现。
*/
/*void main ( void)
{
ascii_read_coil_status ( 1,tx_buf,0,8);
write (com1,tx_buf );
read (com1,rx_buf);
ascii_data_anlys( coil,rx_buf,0);
ascii_read_input_status ( 1,tx_buf,0,8);
write ( com1,tx_buf );
read (com1, rx_buf);
ascii_data_anlys( di,rx_buf,0);
ascii_read_hldreg ( 1,tx_buf,0,8);
write ( com1,tx_buf );
read (com1, rx_buf);
ascii_data_anlys( hld_reg,rx_buf,0);
ascii_read_anloginput( 1,tx_buf,0,8);
write ( com1,tx_buf );
read (com1, rx_buf);
ascii_data_anlys( ai,rx_buf,0);
ascii_set_coil (1,tx_buf,0,1); //第一个继电器吸合/
write ( com1,tx_buf );
read (com1, rx_buf);
ascii_data_anlys( di,rx_buf,0);
ascii_set_coil (1,tx_buf,0,0); //第一个继电器释放/
write ( com1,tx_buf );
read (com1, rx_buf);
ascii_data_anlys( di,rx_buf,0);
}*/
下载软件